10. Multimedia Database Systems

Contents

10.1 Database Systems
10.2 Multimedia Database Management System
 – Properties
10.3 Characteristics of MDBMS
10.4 Data Structure
 – Data Types
10.5 Operations on Data
10.6 Integration in a Database Model
 – Relational Database Model
 – Object-oriented Database Model
10. Multimedia Database Systems

10.1 Database Systems

Database Management System (DBMS)
10. Multimedia Database Systems

10.2 Multimedia Database Management System

Main task of Database Management System (DBMS) is to abstract from the details of:

- storage access
- storage management

Location of the MDBMS:

- embedded between the application domain and the device domain

Integration into the system:

- through operating system
- communication components
10. Multimedia Database Systems

10.2 Multimedia Database Management System / Properties

Persistence of Data:
- Data outlive processing programs and technologies, e.g. companies have to keep data in databases for several decades.

Consistent View of Data:
- Synchronisation protocols provide a consistent view of data in a multi-user system.

Security of Data:
- Transaction concepts ensure security and integrity protection in case of system failure. Recovery of lost data.

Query and Retrieval of Data:
- Query languages such as SQL (Structured Query Language) enable formulating database queries.
- Each entry has its state information that can be retrieved correctly.
10. Multimedia Database Systems

10.3 Characteristics of MDBMS

Corresponding Storage Media
- Multimedia data must be stored and managed according to the specific characteristics of the available storage media.

Descriptive Search Methods
- Query of multimedia data should be based on a descriptive and content-oriented search, e.g., “Picture of a woman with a red scarf”.

Device-independent Interface
- Hide details of device control, but offer information on specific characteristics of available storage media (read-only, write-once, write-many).

Format-independent Interface
- DBMS must hide internal storage format and offer conversions to formats requested by the applications (GIF, TIFF, SUN Raster,).
- This allows changing to new storage technologies without any impact on MM-applications.
10. Multimedia Database Systems

10.3 Characteristics of MDBMS

View-specific and Simultaneous Data Access
- Allows consistent, multiple and simultaneous data access through different queries of several applications (e.g. shared editing)

Management of Large Amounts of Data
- DBMS must be capable of handling and managing large amounts of data. Need of appropriate referencing mechanism.

Relational Consistency of Data Management
- Relations among data of one or different media must stay consistent corresponding to their specification. MMDBMS manages following relations:
 - Attribute Relation: supports different presentation (audio, video, image) of one object.
 - Component Relation: includes all parts belonging to one data object.
 - Substitution Relation: defines different kinds of presentation of the same information, e.g. equation as tables, graphs, animation.
 - Synchronisation Relation: describes temporal relations between data units, e.g. lip synchronisation of audio and video.
10. Multimedia Database Systems

10.3 Characteristics of MDBMS

Real-time Data Transfer
- DBMS must perform read and write operations of continuous data in real-time.
- The data transfer of continuous data has a higher priority than other database management actions.
- Primitives of multimedia operating system should be used to support the real-time transfer of continuous data.

Long Transactions
- The transfer of large amount of data will take a long time and must be done in a reliable fashion.
10. Multimedia Database Systems

10.3 Characteristics of MDBMS

Relation between the operating system and MDBMS:

- The operating system provides the management interface for MDBMS to all local devices.
- The MDBMS provides an abstraction of the stored data and their equivalent devices, as is the case in DBMS without multimedia.
- The communication system provides for MDBMS abstractions for communication with entities at remote computers.
- Operating system and communication system can unify all the different abstractions and offer them.
10. Multimedia Database Systems

10.4 Data Structure

Data can be stored in databases as

- unstructured (unformatted): data are presented in a unit where content cannot be retrieved by accessing any structural detail.

 Example: “Mr. Penguin is a student in the seventh term.”

- structured form (formatted): data are stored in variables, fields or attributes with corresponding values.

 Example:

  ```
  o.student.surname = “mustername”
  o.student.name = “hammel”
  o.student.age = 41
  ```
Multimedia data can be stored in databases as raw, registering and descriptive data types.

- **Raw Data**: represent the unformatted information content, e.g. letters, pixel, values.
- **Registering data**: necessary for correct interpretation and identification of the data; usually concealed in the header. For example: format-description (GIF, TIFF, SUN-Raster, ASCII, EBCDIC, ...), compressed/uncompressed data, etc.
- **Descriptive data**: information about content and structure of SMO to make use easier and faster, e.g. semantic search.
10. Multimedia Database Systems

10.4 Data Structure / Data Types - Examples

Text

- Characters represent raw data
- Registering data describe the coding (e.g., ASCII)
- Descriptive data may include information for layout and logical structuring of the text or keywords

Image

- Pixels represent raw data
- Registering data include the height and width of the picture.
- Descriptive data are individual lines, surfaces and subjects
10. Multimedia Database Systems

10.4 Data Structure / Data Types - Examples

Video sequence

– Pixel matrices represent the raw data
– Registering data provides, in addition to other information, the number of images per second.
– Descriptive data provide a scene description, e.g. ”Jan‘s birthday party”.

Audio sequence

– The digital sample values created by a simple PCM coding represent the raw data
– Registering data represent the properties of the audio coding.
– Descriptive data represent the content of the audio.
An MDBMS must offer, for all data types corresponding operations for:

- archival and
- retrieval

The media related operations will be handled as part of or an extension of query languages, e.g. SQL

Different classes of operations are needed:

- input
- output
- modification
- deletion
- comparison
- evaluation
10. Multimedia Database Systems

10.5 Operations on Data

Input (insert / record) operation:
- data will be written to the database
- the raw and registering data are always needed, descriptive data can be attached later

Output (play) operation:
- reads the raw data from the database according to the registering data

Modification:
- changing of raw, registering and descriptive data
- Modification can also be understood as a data conversion from one format to another.

Deletion operation:
- removes an entry from the database
- the consistency of the data must be preserved
10. Multimedia Database Systems
10.5 Operations on Data

Comparison:
- Many queries to the MDBMS consist of a search and retrieval of the stored data
- Queries are based on comparison information
- Individual patterns in the particular medium are compared with the stored raw data → not succesfull enough
 ➔ Pattern matching, search in descriptive data, etc.

Evaluation:
- generation of the corresponding descriptive data from the raw and registering data
10. Multimedia Database Systems

10.6 Integration in a Database Model

Design of multimedia database system based on two different kinds of DBMS:

ERDBMS (Extensible Relational Database Management System):
- Definition of additional, application-dependent datatypes as domains for attributes.
- Definition of new functions to control behaviour and access to the data.
- Embedding new types and functions into existing RDMBS.

OODBMS (Object-Oriented Database Management System):
- Different media are represented by classes, whose instance variables include the data as internal state.
- Class hierarchy allows objects relations, offer well information navigation and flexible presentation possibilities.
Simplest possibility to implement a multimedia database is to use the relational database model.

The attributes of different media in relational databases are defined

Attributes can specify

- text
- audio
- video

Advantage

- compatibility with existent database applications
A relation “student” is given

Student (
 Admission_Number Integer,
 Name String,
 Picture Image,
 Exercise_Device_1 Video,
 Exercise_Device_2 Video
)

A relation’s attributes can be specified through different media types

 – picture
 – exercise
 – video

Other entries are ”athletics”, ”swimming” and ”analysis”

Athletics (
 Admission_Number Integer,
 Qualification Integer,
 The_High_Jump Video,
 The_Mile_Run Video
)

Swimming(
 Admission_Number Integer,
 Crawl Video
)

Analysis (
 Qualification Integer,
 Error_Pattern String,
 Comment Audio
)
Type 1 Relational Model
- Value of a certain attribute can be fixed over the particular set of the corresponding attribute types, e.g. the frame rate of the video can be fixed
- In the example, the videos from the exercise davesies 1 and 2 will play at the fixed rate defined by the type 1 specification

Type 2 Relational Model
- A variable number of entries can be defined through the type 2 relational model
- In the example, the individual disciplines of each admitted student are identified through their admission numbers

Type 3 Relational Model
- Additionally, an entry can simultaneously belong to several relations
- In the example, a video entry of a student can be assigned to the relation "athletics" as well as to the relation "analysis"
In object-oriented databases
- classes with objects are defined
- objects can be put in relations via a class hierarchy
- a semantic specialization of classes and objects can follow

Example
- Main class: sport institute
- Subclass: athletics, swimming
- Objects: students

Advantage:
- These system offer good information navigation and flexible presentation possibility

Desadvantage
- Query operations are incompletely supported